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Abstract

Nat ural convection along vertical surfaces occurs in the oil filled
caverns in the Strategic Petrol eum Reserve (SPR). These caverns are
located in large salt dones where the geothermal tenperature difference
over 'the cavern height of up to 2000 feet can be 30°F with the hotter salt
at the bottom of the cavern. Due to the coupling of the heat transfer
between the salt and the fluids in the cavern, heat transfer to the oil and
the resulting natural convection can occur during the entire anticipated
storage period of up to 30 years. The wall and fluid conditions are
spatially nonuniformdue to the geothermal tenperature difference and fluid
tenperature stratification

The Modified Local Simlarity (M.S) nethod has been devel oped and
applied to natural convection along a vertical flat plate with variable
surface conditions and tenperature stratification for application to
natural convection in SPR caverns. The M.S nethod explicitly conserves
energy along the plate. The boundary | ayer velocity and tenperature
profiles are evaluated by the local sinmlarity nethod with appropriate
values of the simlarity paraneters. The MLS nmethod is a significant
i mprovenment to the local simlarity approach and is a useful approximate
tool for analyzing natural convection on vertical surfaces for nonsimlar
condi tions.
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. Introduction

Nat ural convection along vertical surfaces occurs in the oil filled
caverns in the Strategic Petrol eum Reserve (SPR). These caverns are
located in large salt donmes where the geothernal tenperature difference
over the cavern height of up to 2000 feet can be 30°F or nore. The hotter
salt is located at the bottomof the cavern; this configuration will cause
natural convection in the enclosed fluids as a result of buoyancy forces.
Since the heat transfer between the salt and the fluids in the cavern is
coupl ed, heat transfer to the oil and the resulting natural convection can
occur during the entire anticipated storage period of up to 30 years. SPR
cavern wall conditions are nonuniform due to the geothernal tenperature
di f ference. In addition, the fluid tenperature is nonuniformowi ng to the
thermal stratification of the oil. Thus , the wall conditions and the
ambient fluid tenperature are both variable.

The nethods in general use for the analysis of natural convection are
the integral, simlarity, Jlocal nonsimlarity, and finite difference
approaches. In addition, approxinmte nethods have been devel oped by
Raithby, et al. (1975, 1977, 1978) and by Lee and Yovanovich (1987, 1988).
Each of these methods is discussed bel ow

The integral nethod has been used by Sparrow (1955) for certain

prescribed variations of wall tenperature and wall heat fl ux. While the
results conpare well to simlarity solutions for constant wall heat flux,
no conparison for nonuniformwall tenperature or heat flux is known. The
integral results reported by Sparrow (1955) will be conpared to the results
of other methods in this report for the applicable cases. In general, the
weakness of the integral approach is that the velocity and tenperature
profiles have to be assuned. While the assunmed profiles may be adequate
for normal conditions, the effect of changes in the boundary conditions are
not reflected in the profiles. In addition, acceptable profiles for

turbulent flow conditions are not avail able.

The simlarity method is a powerful boundary |ayer approach. In this
nethod, the boundary |ayer partial differential equations (PDEs) are
reduced to ordinary differential equations (ODES) through the introduction
of simlarity variables. Unli ke the PDE set which has to be solved for
each location along the plate, the ODE set only has to be solved once for a
given set of parameters. The resulting solution is valid along the entire
plate. Unfortunately, simlarity solutions only exist for a restricted
nunber of wall tenperature variations and fluid tenperature stratification.

As an approximate solution to other wall and fluid tenperature
variations, the simlarity nethod can be applied locally; this approach is
called the local sinmilarity approach. The approach allows for rapid,
t hough approxi mate, evaluation of natural convection phenonena. However ,
the values of the sinmlarity variables are chosen based on the type of
boundary conditions inposed without regard to the variation of these
conditions along the plate. As shown by Sparrow and Gregg (1958), this
techni que may give poor results. They applied simlarity results from an



isothernal wall to a variable wall tenperature case. The resulting tota
heat transfer for the plate was significantly in error including cases
where the direction of heat transfer was incorrect. Gt her applications of
the local simlarity approach (Kao, et al. (1977)) have shown large errors
in certain cases.

Local nonsimlarity methods based on the work of Sparrow, et al.
(1970, 1971) and M nkowycz and Sparrow (1974) have been used for natura

convection as presented by Kao (1976) for variable wall conditions. Chen
and Ei chhorn (1976) used this approach for a constant tenperature wall in a
variabl e tenperature fluid. In general, the local nonsimlarity results

compare well with data and with the results from nunerical calculations.

Finite difference procedures are also available as exenplified by the
met hods presented by Cebeci and Bradshaw (1984). Results from a nunerica
approach using finite differences have been given by Kao, et al. (1977) for
variable wall tenperature and wall heat flux cases. The finite difference
approach is considered to be the nobst accurate technique for the analysis
of natural convection boundary |ayer flow

Appr oxi mat e met hods have been proposed by Raithby, et al. (1975, 1977,
1978) and by Lee and Yovanovich (1987, 1988). Nei t her of these nethods
were considered for use in SPR since neither nethod reduces the simlarity
solutions for simlar boundary conditions. Differences of up to 20% are
noted by Raithby and Hollands (1978) when their nethod is conpared to
simlarity solutions. The method of Lee and Yovanovich (1987, 1988) shows
simlar differences and has the added di sadvantage of a conplicated form

Anal ysis of natural convection in SPR caverns involves highly
turbul ent conditions with Rayleigh numbers of up to 101 and |ong transient
times of up to 30 years (Webb (1988)). Therefore, finite difference and
local nonsimlarity nethods are inpractical due to |ong estinmated conputing
times which result fromthe need to recalculate the boundary |ayer results
each tine step. The integral method could be used for SPR, although the
assurmed profiles are a problem especially for turbulent flow conditions.
The wall and fluid tenperature variations preclude direct use of the
simlarity solutions. The local simlarity method woul d be appropriate for
SPR in that the boundary layer results can be tabulated for use at each
tine step; therefore, the answers do not need to be redone each time step
and the resulting calculations would be fast. The problem however, is
that the errors in heat transfer rates, including the direction of heat
flow, can be significant even for sinple cases.

If the heat flow or energy conservation problens noted for the |oca
simlarity approach can be corrected, the nmethod would be ideal for SPR
use. The present study corrects this problem by nodifying the |oca
simlarity approach to explicitly conserve energy as the boundary |ayer
devel ops al ong the surface. This Mdified Local Similarity (MS) approach
is devel oped and conpared to results fromother nethods in this report.
The method has been used in the devel opment of the SPR velocity nodel as
summarized by Webb (1988).



[I. Fornulation

Consi der natural convection boundary |ayer flow along a flat plate as
depicted in Figure 1. The boundary |ayer energy equation can be integrated
along the plate using the local boundary |ayer velocity and tenperature
profiles. For the present study, the boundary |ayer profiles are
calculated by the local simlarity nmethod. The local sinilarity method has
two paraneters which are nmathematical descriptions of the tenperature
variation along the plate and in the surrounding fluid. In addition to
bei ng mat hematical parameters, these variables have physical significance
in the boundary layer problemwith regard to overall conservation of
energy. The gl obal energy conservation equation can be witten in terms of
the local sinmlarity parameters to ascertain their equivalent values for
nonsimilar conditions. The gl obal energy equation and the eval uation of
the boundary layer profiles are detailed bel ow

A. dobal Energy Equation
The boundary |ayer velocity and tenperature profiles along a plate

will vary with distance x. Consi dering conservation of energy per unit
width of the plate as depicted in Figure 2,

. _" . . *
m, ¢ T +qAX+(m2-ml)cpr

1 'p 71
- 1i12 c, T, (1)

or

: 7 o+ @ A = g (t, - T 2

mpoep (Tp - T * 9 = my e (T - Tg (2)
wher e

" l xz "

G | o 3)

X

and T is the average tenperature of the fluid entrained into or ejected
from the boundary layer. Note that the fluid specific heat, c,, is assumed
to be constant.

The average tenperature of the entrained or ejected fluid will be
assuned to be equal to the local environnental fluid tenperature for this
analysis. The velocity boundary |ayer thickness is |arger than the therna
boundary | ayer for Prandtl number fluids of order 1.0 and higher, so any
fluid exchange will be at the environnental tenperature if local simlarity
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Figure 1. Boundary layer coordinates.
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Figure 2. Boundary layer global energy conservation.



is assumed. This assunption breaks down for |ow Prandtl nunber fluids such
as liquid netals where the simlarity solution gives a larger thermal
boundary layer than velocity boundary |ayer (Gebhart (1985)).

The average boundary layer tenperature, T, is the fluid tenperature at
that location plus the average difference in tenperature of the convected
fluid over the environnental value, or

) u (T - Tf(x)) dy
T = Tf(x) + . (4)
J-u dy

Conbi ni ng the above equations results in

* _n
Tf) + q2 AX

. Ju (T - Te(x)) dy
-m,c_ (T, -T, + ). (5)
2% g, T E .[udy

The above equation is general; any restrictions as to the orientation,
etc. are fromevaluation of the boundary |ayer paraneters. Knowi ng the
conditions at location 1, the wall heat flux, and the environnental fluid
tenperature, the above expression can be easily evaluated if the boundary
layer velocity and tenperature profiles are known. For this study, these
profiles will be based on local simlarity as discussed in the next
section.



B. Boundary Layer Profiles

The boundary layer profiles for use in the global energy equation will
be evaluated for |aminar natural convection over a nonisothermal vertica
flat plate in a variable tenperature fluid nmedium Invoking the Boussinesq
approxi mati on with otherwi se constant properties and neglecting viscous
di ssipation and the pressure-work term the steady-state conservation
equations are (Jaluria (1980))

Continuity
2u +—3—;—-o (6)
X- Moment um
du du 82u
U vV Ty m 8 AT T 4w 0y (7)
Ener gy
W8T L, BT, a1 (8)
ax dy ay2

The above conservation equations can be integrated across the boundary
layer fromy-0 (wall) to y=o (environnent). Since the velocity v is 0. at
y-0. and at y=«, the integration results in the following (Jaluria (1980))

Monment um
d 2 u
- T - dy - v 9
G e (T T0) dy e v |w (9)
Ener gy
daT
d I f 3T
u (T - T (x)) dy + J udy = - a I (10)
dx f dx 8y |,
tenperature stratification of the environnmental fluid. The continuity
equations.

first energy equation is the global energy equation (5), which is concerned
with the energy in the boundary layer as it grows along the plate with
respect to x. The second energy equation is the local energy equation (10)



which is related to the energy in the boundary layer at |ocation x only.
For energy conservation, both equations nust be satisfied. The gl obal
energy equation nmust conserve all the energy added to the boundary |ayer up
to the location x, and the local energy equation nust conserve the energy
added to the fluid fromthe wall at location x.

In the present analysis, simlarity variables will be used to rewite
the two energy equations. These equations will then be conbined to lead to
relationships for the simlarity variables that nmust be satisfied for
gl obal and |ocal energy conservation.

According to Sparrow and Gregg (1958) and Yang (1960), sinmilarity only
exists for two specific distributions of the tenperature difference between
the wall and the fluid: the power-law and the exponential distributions.
In each case, any variation in the fluid tenperature nust be of the sane
form as the wall to fluid tenperature difference. Since the two
distributions lead to different results, each will be discussed separately.



1. Power - Law Distribution

For the power-law distribution, the tenmperature difference between the
wall and fluid is a function of the distance xto a power, or

AT(x) = T _(x) - Tg(x) = N X", (11)

For simlarity, the fluid tenperature variation nmust be of the same form
or (Jaluria (1980))

J N xn -
4 n

J
Tf(x) - '1‘r - in AT(x) (12)
where the reference tenperature, T,, is the fluid tenperature at x = 0. |f
the fluid temperature is constant, J is equal to O.

The stream function and sinilarity variables for this case are
(CGebhart and Mol lendorf (1969))

Go
v = 4 (—4){—)1/4 v £(n) (13)
G
n o= (L (14)
T - Tf(x)
wher e
3
g8 B x (Tw(X) - Tf(X))
Gr = (16)
X 2
vV
and the fluid velocity in the x direction becones
T ap _ 8y _dn
dy an 3y
2 172
- e (17)

The boundary layer partial differential equations (6)-(8) reduce to a
set of coupled ordinary differential equations when the above sinilarity
vari abl es are inposed. For the power-law distribution, the Iocal
simlarity form of these equations is (Jaluria (1980))



e r '2
f +(n+3) ff -2 (m+1)f +6=0 (18)
6

e+ (n+ 3 f 8 -4nf 8 -JF =0 (19)

with the appropriate boundary conditions. These equations have been sol ved
in the present study by the finite difference method since the traditiona
shooting nethod was unreliable. This method is summarized by Webb (1989)

The first termto be evaluated for substitution into the gl obal energy
equation (5) is the difference between the fluid tenperature at location 2
and Tg. Expressing the fluid tenperature difference in terns of the
simlarity paraneter J gives

n

LN (20)

£ £~ % n %

N can be evaluated at location x;, and the above equation can be rewitten
as

* J AT2 X* n
Tf -Tf-T(l-(Tz) ). (21)

Using the simlarity paraneters defined above along with equation (21), the
gl obal energy equation (5) becones

- * -1
i - +
ml c:p (Tl Tf) q2 AX
x* n f 6 dn
(1 - () + - ) AT,. (22)
2 f dn

P
m2cp 4 n

Expressions for the nmass flow rate and the tenperature difference at
location 2 will now be developed. The nass flow rate per unit width can be
expressed in terns of the local simlarity variables as

m=puA/W=pusé

2y 12 [ e L (ks
X X n r’eo 4

@©

il 4
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-4 .[ o (_f_g—>1/a /% prt/* (23)
174

The heat flux relationship

" aT
k ———
Y |y

g B
=-ko (=5

1/4 AT5/4 x-1/4
2
4y

can be used to get the tenperature difference as a function of x, or

/- (— Ly (BB 1/ 1/ (25)
-k ﬁw 4y

Note that for a similarity solution, the dinensionless wall tenperature
gradient, #4,, is constant for all x values, and the heat flux variation can
be witten as

" 5/4 -1/4 Sn/4 -1/4 (5n-1)/4
q a AT X a X X a X (26)

Usi ng equation (25), the mass flow rate equation can be rewitten as

mo=4p J f’dﬂ (gj_g_)o.Z x0,8 (________)0.2 (27)

4y -k
w

and the global energy equation (22) then becones

- * <t
c (T1 - Tf) + q2 AX

ml p
, q,
=4 Pr  f£dp (——)
' -8
w
* £ 6 dn

J X . n

G— 1 - (=) + ; ) x,. (28)
4 n X, £ dg 2

The sanme sinilarity variables can be used in the integrated | ocal
boundary | ayer equations (9) and (10) resulting in the follow ng equations
for the boundary |ayer quantities

11



Moment um

’2 s
(5+3n)Jf dn-J&dn-f (29)

w

Ener gy

’

8 '
(5n+3)ff'edn--—5‘r'-’—--JJf dn. (30)

These rel ationshi ps are a neasure of the shape of the velocity and
tenperature boundary |ayer profiles and are useful for checking the
accuracy of the nunerical solution of the local simlarity equations. They
are also helpful if nunerical fits are generated to sone of the boundary
layer integrals as these expressions can be used to ensure consistency
among the various paraneters.

Rearranging the local boundary |ayer energy equation (30) and
substituting it into the global energy equation (28) results in

i T
( cp(

* - "
1 1 - Tf) + q2 AX) / (qz xz)

*
J X \n ' '
‘E— (1 -(—;;) Y + 4 I f 6 dn / I £f dn

; ; (31)
J +(5n + 3) J.f edn/Jf dn

The ratio of the first terns in the nunerator and denom nator on the

RHS and of the second terms on the RHS nust both be equal to the LHS.  For
the second terns,

4 . * _n 1"
Snra - (B oey (T - T + 4y &%)/ (q) Xy) (32)

or,
L 4q, m To-Th) + a, AX 3
n = _3_ [ qz X2/ ( Cp ( 1 - f) qz ) - 3]. (3m
Simlarly, making use of equation (32), the first terns give
* 4 1
x = x2 [1 -(snﬁ?j—] /m, (34)

If x, is taken to be at the | eading edge of the plate (x;=0.) with no
initial mass flow rate, then Ax=x,, and the above equation set sinplifies
considerably to

12



l "
n=—1[4q,/4 -3] (35)

The value of the sinmlarity paraneter n is just a function of the
ratio of the local to the average heat flux up to that point. The fluid
tenperature evaluated at x* is that required for energy conservation

Surprisingly, the stratification paranmeter, J, is independent of
gl obal conservation of energy. Instead, the value of J is determined by
the local value of the heat flux, q%. Equating the conservation of energy
equations (2) and (33) gives

. - * a "
my ep Ty = Te) = o3y 9 % (36)
where the values on the RHS are known. Expandi ng the LHS of the above
equation results in the expression
f 4 dn % 4 "
m, c_ ( : AT, + T, - T.) = —/———— q, X,. (37)
2 p £ d 2 £, £ (5n + 3) 2 "2

This equation includes the effect of tenperature stratification on the
| ocal energy balance. Using the equations devel oped above for m and AT
the above equation can be witten as

J.f' dn J-f' ¢ dn .
A ; (A — ; + T - T.) = A (38)
1 0.2 2 0.8 f f 3

(- Gw) rf dn (- 9w) 2

wher e
qll

_ g8 ,0.2 0.8 32 0.2

Al 4cp#(42) X, (k) (39)
v
q"

_ . gp.,-02 02 2 0.8

A2 =3 X () (40)
4y

A : (41)

37 T(Gn +3 Y2 %

For uniformfluid conditions, Te is equal to Tz, and the above expression
reduces to the local integrated energy equation with J equal to zero

13



The boundary layer integrals in the above expression are dependent on
the simlarity parameters n and J. Since the value of n is determined by
equation (33) or (35), the only adjustable parameter is J.

Sol ution of the above expression for J initially looks difficult. In
practice, however, solution is straightforward and, for the present
i nvestigation, has been acconplished by iterating on the form

£9dr A -a-te (. -TH
o83 2 %p U, £
; . (42)
- Bw 4 Pr 9, X,

wher e mi'l is the value of m, fromthe previous iteration. The ratio of
the LHS of the equation is a strong function of J for a given value of n as
depicted in Figure 3 for a Prandtl nunber of 0.7, and convergence of the
above procedure has not been a problem

In summary, for a specified heat flux problem the simlarity

paraneter n is determned directly from equation (33) or (35). For a
uni form environnental fluid tenperature, the sinmlarity parameter J is
equal to O. Ot herwise, the value of J is determned by iterating on
equation (42). Al'l the boundary |ayer parameters are uniquely deternined

by these values of n and J. For situations where simlarity conditions are
inposed, the simlarity solutions are obtained. This is not the case for
the method devel oped by Raithby, et al. (1975, 1977, 1978). For variable
conditions where an exact simlarity solution does not exist, the MS
met hod provides an estimate of "equivalent” similarity conditions including
velocity and tenperature profiles. This estimate is achieved by requiring
conservation of energy and the sanme |ocal heat flux at position x;.

In the above devel opment, the heat flux variation was assuned to be
speci fi ed. This situation is not always the case,as the tenperature
distribution is sometinmes given. In order to calculate the simlarity
paraneters, energy consistency between the specified problemand the M.S
method is required. The heat flux as given by equation (24) is

n

q = -k 9;(—5—%) 174 ATS/A x-l/[* (24)
4y

so the integrated heat flux for constant properties is proportional to the
following integra

5/6 -1/4

Q-Iq" dx«Jlo;AT dx (43)

and the expression for n becones

14
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Figure 3. Variation of heat flux paraneter with n and J.
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1 . - *
n = — [4 9, X, / (my °s (T1 - Tf) + Q - 3] (44)

which, for x,and m; equal to 0. can be witten as

4 5" ar/% 374
n 1 [ w o2 2 .3 (45)
3 row ATS/ "x'l/ 4dx

The difficulty in evaluating the above expression is in the tenmperature
gradient termwhich is a function of x. The tenperature gradient for a
given Prandtl nunber is only a function of n and J, so iteration is
required on this equation and the equation given above for J.

Technically, for specified surface tenperatures, the M.S nethod is not
a local simlarity approach since the answer at x depends on the results at
the upstream | ocations. Iteration is required for the variation of the
simlarity paraneters wth x. However, this iteration is easily
acconplished since the only term that depends on n and J is 4,, and
convergence is rapid for the cases analyzed in this report

Wil e specified temperatures are a convenient analytical case, the
wal | temperature and wall heat fluxes are usually coupled to each other
t hrough heat conduction, and either the wall tenperature or the heat fl ux
can be used in the solution schene. For the present nethod, heat fluxes
are consi derably nore convenient than tenperatures since no iteration in
the M.S method is involved
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2. Exponential Distribution

For the exponential distribution, the tenperature difference between
the wall and the fluid is given by

AT(X) = T_(x) - To(x) = M ™, (46)

For similarity, the fluid tenperature variation nmust be of the same form
or (Jaluria (1980))

J M mx
Tf(x) - '1‘r - m (e

- 1) (47)

where the reference tenperature T, is the fluid tenperature at x = 0. As
for the power-law profile, a uniformtenperature fluid results in a J value
equal to O. Note that the simlarity variable mis dinensional and has
units of inverse distance.

As can be seen from equation (46), the tenperature difference at the
| eadi ng edge can not be equal to O. Additional problems with the
exponential distribution, such as non-zero nonentum and heat flow at the
| eading edge, are discussed by Gebhart and Ml lendorf (1969). In practice,
these difficulties nake the exponential distribution nuch |ess useful than
the power-law distribution. These problenms will also be evident in the
eval uation of the exponential distribution later on in this report.

The stream function and sinilarity variables for this case are the
sane as for the power-law distribution with x replaced by (I/np, or
(Gebhart and Mol |l endorf (1969))

G
p = 4 (M ) (48)
GL
n o= "y (49)
T - Tf(x)
f(n) = T - T f(X) (50)

wher e

g B () (T (0 - T(x)
6r_ = (51)
m 2

v

and the fluid velocity in the x direction becones
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ay 3y an

ay an ay

172 ..
= 2 v Gr 0 mf'. (52)

The boundary layer partial differential equations (6)-(8) reduce to a
set of coupled ordinary differential equations when the simlarity
vari abl es are inposed. For the exponential distribution, the |ocal
simlarity form of these equations is (Jaluria (1980))

11! !2
f + ff" - 2f + § =0 (53)

+fé§ -4f'e -J f, =0 (54)

with the appropriate boundary conditions. These equations have been sol ved
in the present study by the finite difference nethod as summarized by Wbb
(1989).

The first termto be evaluated for substitution into the gl obal energy
equation (5) is the difference between the fluid tenperature at location 2
and T:. Expressing the fluid tenperature difference in terns of the
simlarity parameter J,

*
mx mx
* J M 2
sz-Tf- 7 (e -e). (55)

M can be evaluated at location x;, and the above equation can be rewitten
as

« J AT, mx* - x,)
T, -Tg=—F7— (1-e ). (56)

Using the simlarity parameters defined above along with equation (56), the
gl obal energy equation (5) becones

) - * -
my cp (T1 - Tf) + q, AX

J mx* - xz) f'e dn
- 'ch (T(I-e ) + ) )ATZ. (57)
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Expressions for the mass flow rate and the tenperature difference at
location 2 will now be developed. The mass flow rate per unit width can be
expressed in terns of the local simlarity variables as

m=pVA/W=pVS$

-4 4 J‘ £ dn (_&%9/4 éﬁ 3/6 o 1/b (58)
Ly

The heat flux relationship

v

q

can be used to get the temperature difference as a function of (I/m, or

AT5/4 ( q" y ( g ;?2) -1/4 (1 1/4

- (60)
-k ¢ 4y ?
w

Note that for a simlarity solution, the tenperature gradient at the wall
and m are both constant, and the heat flux variation can be witten as

5/6 Smx/4

qQ a AT (61)

Usi ng equation (60), the nass flow rate equation can be rewitten as

108 ,0.2 (62

-k @
w

; ! " 0.2
m-wjfdw%) (
4y

and the global energy equation (57) then becones

. - * "
oy cp (Tl - Tf) + q, AX

"

' 9,
-4PrIqu( —)
-4
w
Mx* - x.) £9 dn
J
(5 A -e 2)+ )—;—. (63)

f' dn
t

The sanme sinmilarity variables can be used in the integrated | ocal
boundary |ayer equations (9) and (10) resulting in the follow ng equations
for the boundary layer quantities
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Moment um
2
[t an-foam - (64)

‘Energy

g
’ w ’
SIfﬁdn--Tr—-JJ‘f dn (65)
where the paraneter m does not appear.

These rel ationships are a neasure of the shape of the velocity and
tenperature boundary layer profiles and are useful for checking the
accuracy of the nunerical solution of the local simlarity equations. They
are also helpful if nunerical fits are generated to sone of the boundary
layer integrals as these expressions can be used to ensure consistency
anong the various paraneters.

Rearranging the local boundary |ayer energy equation (65) and
substituting it into the global energy equation (63) results in

. = * _n "

mx* - x,) ' )
J 2 4
- (L-e )+_mJ-f 0dn/If dn

J+5Jf'adn /If dn

(66)

The ratio of the first ternms in the nunerator and denomnmi nator on the
RHS and of the second terms on the RHS nust both be equal to the LHS. For
the second terms,

4 ) - * _n n
Em " [ (ay ° (T, - Tp) + q, &%) / q,] (67)
or,
4 " ) - * .
m= — [q, / (@ ° (T, - Tp) + 9, AX)]. (68)

Similarly, making use of equation (67), the first terms give

*

X =x, -1.609 / m (69)

2
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If %, is taken to be at the |eading edge of the plate (x,-O) with no
initial mass flow rate, then Ax-x,, ~and the above equation for mx,
simplifies considerably to

4
mxy = —5— —. (70)

The value of the simlarity parameter mis just a function of the
ratio of the local to the average heat flux up to that point and x,. The
fluid tenmperature evaluated at x* is that required for gl obal energy
conservati on.

Surprisingly, the stratification paraneter, J, is independent of
gl obal conservation of energy. Instead, the value of J is determned by
the local value of the heat flux, qé. Equating the conservation of energy
equations (2) and (68) gives

. - * 4 "
my e (T - Tg) = == 9 (71)
where the values on the RHS are known. Expandi ng the LHS of the above
equation results in the expression

£'6 dy o 4
c_ ( - AT, + T, - T.)) =——4q,. (72)
2°p £ dn 2 f2 f 5m *2

This equation includes the effect of tenperature stratification on the
| ocal energy bal ance. This equation is of the sane form as equation (38)
derived for the power-law distribution. The sane techniques outlined for
the solution of equation (38) have been used for equation (72) above

In summary, for a specified heat flux problem the simlarity

paraneter mis determined directly from equation (70) or (72). For a
uni form environmental fluid tenperature, the simlarity parameter J is
equal to O. Ot herwise, the value of J is determined by iterating on
equation (72). Al the boundary |ayer parameters are uniquely determ ned

by these values of mand J. For situations where sinmlarity conditions are
inposed, the simlarity solutions are obtained. This is not the case for
the nmethod devel oped by Raithby, et al. (1975, 1977, 1978). For variable
conditions where an exact simlarity solution does not exist, the MS
method provides an estimate of "equivalent" simlarity conditions including
velocity and tenperature profiles. This estimate is achieved by requiring
conservation of energy and the same |ocal heat flux at position x,.
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In the above devel opment, the heat flux variation was assumed to be
speci fi ed. This situation is not always the case, as the tenperature
difference is sonetinmes given. In order to calculate the simlarity
exponent on the tenperature distribution, energy consistency between the
specified problemand the M.S nmethod is required. The heat flux as given
by equation (59) is

4y

so the integrated heat flux for constant properties is proportional to the
following integra

qQ - J q dx « J 0 at’% al/* ax (73)

and the expression for m becones
2 e ; R 74
m = T [q2 x2 / (ml Cp ( 1 = f) + Q)] ( )

whi ch, for x, and m, equal to 0. can be witten as

0' ATS/4 m]'/4 X
( 2 2
I 0; ATS/4 ml/a dx

| £

m = ). (75)

The difficulty in evaluating the above expression is that mis a function
of x, so iteration is required on this one equation. Note that 4, is not a
function of mor x but is sinply a function of J and the Prandtl nunber

Technically, for specified surface tenperatures, the M.S nmethod is not
a local simlarity approach since the answer at x depends on the results at
the upstream | ocations. Iteration is required for the variation of the
simlarity paraneters wth x. However, this iteration is easily
acconpl i shed since the only term that depends on mis mitself, and
convergence is rapid for the cases analyzed in this report

Wi | e specified tenperatures are a convenient analytical case, the
wal | tenmperature and wall heat fluxes are usually coupled to each other
t hrough heat conduction, and either the wall tenperature or the heat flux
can be used in the solution schene. For the present nethod, heat fluxes
are considerably nore convenient than tenperatures since no iteration in
the M.S method is involved
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[11. Evaluation

The Modified Local Simlarity (MS) method derived above has been
applied to a nunber of nonsimlar wall tenperature and heat flux cases wth
uniformfluid tenperature and to an isothermal plate in a stratified fluid
envi ronnent. In each case, the power-law and exponential distributions
have been eval uated. Variation of the similarity variables and of the
predicted surface behavior is presented.

The results in this section conpare the predictions fromthe MS
nethod with those from ot her approaches and, for the case of an isotherm
plate in a stratified fluid, to experinental data. The results from
anot her possible inplenentation of the local simlarity approach in
addition to the M.S nethod are also given. Wiile the M.S nethod is based
on conservation of energy as the boundary |ayer develops and matching the
| ocal heat flux, another reasonable approach would be natching the |oca
value of the specified paraneter (tenperature difference or heat flux) as
well as the local slope of that paranmeter.

For exanple, consider the power-law distribution as applied to an
exponential variation of the tenperature difference. Equating the |oca
temperature difference as well as the slope of the tenperature difference
at any point x with the simlarity distribution,

AT = & = N x" (76)

d(AT)/dx = e* = N n x"™/ (77)

results in the requirenent that

As anot her exanple, consider the power-law distribution for an
exponential variation of the heat flux. Equating the local value and the
sl ope

q/k = X = a x (5N - /8 (79)

d(q"/k)/dx = e* = —5”4' Loa x> - /A (80)
gives the result that

n=0.8¢ + 0.2. (81)

The predictions fromthis application of the local simlarity approach
will be presented in the results that follow and will be referred to as the
LS* net hod
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A. Uniform Fluid Tenperature

For uniformfluid tenperature conditions, the M.S and LS* net hods have
been applied to specified wall tenperature and specified heat flux cases.
Results to these cases for a nunber of other nethods are summarized by
Yang, et al. (1982) for a Prandtl nunber of 0.7 where the property termis
assuned equal to 1.0, or

(—5—6—) - 1.0 (82)
Ly

In all these cases, the stratification paraneter, J, is equal to 0. since
the fluid tenperature is uniform The power-law and exponenti al
distributions will be discussed for each case.

The results presented by Yang, et al. (1982) are in terms of
transformed surface conditions as given by Kao, et al. (1977); these
transformations are sunmarized in the appendi Xx. The use of these
transformed variables can distort the surface condition variation, and this
met hod of presentation will not be used. The results that are given in
this section are in terms of physical variables, i.e., the variation of the
temperature difference or the tenmperature gradient at the surface, not the
variation of the transforned variable.

The results fromthe M.S nethod and the LS* approach will be conpared
to the follow ng predictions. Note that the M.S and LS* nethods solve two
coupl ed ODE’s.

1. Nunerical - as given by Kao, et al. (1977).

2. Kao LS - Kao, et al. (1977) presents local simlarity results in
terms of his transformed coordinates. Thi s approach solves two
coupled ODE's simlar to the M.S and LS* net hods. The equations
are given in the appendix.

3. Kao nmethod - The nethod devel oped by Kao, et al. (1977) uses
transformed coordinates and is basically a perturbation approach.
Four coupled CDE's are solved in this approach.

4. Yang nethod - Yang, et al. (1982) uses the transformed coordinates
devel oped by Kao with a series expansion of the simlarity
par amet ers. Six coupled ODE' s are solved in this nethod

The Kao and Yang net hods are nore conplicated than the M.S method or Kao LS
approach since nore ODEs are involved. In addition to the above results,
predi ctions from other methods, such as the integral approach, wll be
incl uded where avail able.
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1.  Specified Surface Tenperature

Since the surface tenperature is known, the conparisons are based on
the tenperature gradient at the surface which is related to the |ocal heat
transfer coefficient. The values of the simlarity parameters are used to
conpare the MLS and LS* tenperature variation with the desired behavior.

a. AT = ex

Power-lLaw Distribution The variation of the simlarity variable n
with x is shown in Figure 4a for the M.S and LS* approaches. In both
cases, the value of n increases considerably with increasing x. Figure 4b

shows the desired tenperature difference as well as the variation predicted
by both approaches. The predictions fromthe methods depend on n which
itself is a function of x as given in Figure 4a. Therefore, in Figure 4b,
two curves corresponding to the two x values of 0.5 and 2.0 are shown for
each approach. In general, the variation of the tenmperature difference is
reasonably close to the desired behavior. The tenperature difference
variation is well represented by the power-law distribution in both
met hods.

The surface tenperature gradient as a function of x is depicted in

Figure 5. The gradient is underpredicted by the MS nethod by
approxi mately 5% Wiile the error is larger than the other nethods, the
magnitude is still relatively small. For the LS" approach, a slight

overprediction of the gradient, especially near the front of the plate, is
not ed. Thi s behavior is also seen for the Kao LS nethod. Predictions for
the Kao and Yang nethods are not shown in this figure since both approaches
yield predictions indistinguishable from the nunerical results.

Exponential Distribution For the exponential distribution, the M.S
and LS approaches yield the simlarity solution with mequal to 1.0. Even
with this ideal conparison case, the wall tenperature gradient shown in
Figure 6 is overpredicted, especially at small x val ues. The reason for
this difference is the non-zero nonentum and heat flow at the |eading edge
as alluded to earlier. According to Gebhart and Mollendorf (1969), the
exponential distribution results are reasonable only if mx is much greater
than 1.0. The results given in Figure 6 are consistent with this criteria.

b. AT = sin x

Power-Law Distribution Figure 7a shows the behavior of the sinilarity
variable n with x. For the M.S nethod, n decreases with distance up the
pl ate and changes sign at an x of about 2.15. For the LS* approach, n also
decreases with distance up the plate and changes sign at an x value of n/2.
The tenperature difference is given in Figure 7b for x of 1.0 and 2.5. For
smal |l x values (< ~x/2), both methods give a good approximation of the
si nusoi dal tenperature difference. For larger x values, the MS
distribution becomes increasingly poor, especially when n becomes negative.

25



Fi gure 4a.

Figure 4b.

AT

20 -

,/
L3 /,,

LS\’// /

10 <

//, /
PR ~ MLS
P4
—

0.0 = . | j
0.0 05 1.0 1.5 2.0

X

Variation of n for AT = ex,
PL Distribution.

—_— AT=e*
8.0 F . e MLS APPROXIMATION
- - = = LS*APPROXIMATIOM
6.0
4.0
2.0
0.0 ~
2.0

Approxi mati on of AT for AT = eX.

PL Distribution.
26



Figure 5.
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Figure 6.
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Fi gure 7a.
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The surface tenmperature gradient as a function of x is depicted in

Figure 8 for a nunber of other nethods. The Yang nethod gives excellent
results up to an x value of 2.2 after which the nmethod is no |onger
applicable due to convergence problens. The Kao method al so gives good
results out to an x value of 2.3; after this point, the Kao nethod no
| onger conver ges. The Kao local nonsimilarity (LNS) results are
surprisingly poor; only results out to an x value of 2.0 are given by Kao
(1976). Finally, the Kao LS results show reasonable agreenent for the

entire problem although a systematic underprediction is evident,

Results for the M.S and LS power-law approaches are shown in Figure
9. For small x values, the gradient is well predicted. For large x
values, the MS nethod overpredicts the tenperature gradient and the
| ocation of zero heat flux, while the LS* approach underpredicts the
results. Wile not as good as sone of the other methods, the M.S approach
is better than the Ls* method and about the sanme as the Kao LS approach.
This discrepancy is not unexpected due to the poor approxinmation of the
temperature difference behavior by the M.S nethod at |arge x val ues.

Exponential Distri ion For an exponential distribution, the
variation of nk with x is shown in Figure 10a. The value of nx goes to O.
at x values of = and x/2 for the M.S and LS* approaches, respectively. The
tenperature difference conparison is given in Figure 10b. The exponentia
distribution has a very difficult tine matching the required tenmperature
difference variation except for small x val ues. Note that the value of m
cannot be negative or zero, so the tenperature difference nust always
increase with x. This situation |eads to reasonable tenperature variations
for small x values, but very poor distributions for larger x val ues. For
the M.S nethod, the value of nmx is less than or equal to 1.0 for x val ues
greater than about 1.7; for the LS* approximation, nx is always |ess than
1.0. Therefore, the results fromthe exponential distribution are expected
to be poor due to the small nx val ues.

The results for the tenperature gradient variation are shown in Figure
11. The M.S approach significantly overpredicts the wall tenperature
gradient, while the LS* nethod does just the opposite. Bot h nmet hods give
poor results as anticipated.
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Figure 10a. Variation of nmx for AT = sin x.
Exp distribution.

AT = sin x
— e \.S APPROXIMATION
— e = | §*% APPROXIMATION

1.0
-
<
/'/ /
1
//
(g 1 | | |
-2.0 -1.0 0.0 10 2.0 307
X

Figure 10b. Approxinmation of AT for AT = sin x.
Exp distribution.
33



1.0

Figure 11.

Surface tenperature gradient for AT = sin Xx.

Exp distribution.

34

3.5



2. Specified Wall Heat Flux

Since the surface heat flux is specified, the conparisons between the
various nethods are based on the wall to fluid tenperature difference. The
values of the simlarity paraneters are used to conpare the M.S and LS*
simlarity heat flux variation with the desired behavior.

a. q"/k = ex

Power -Law Distribution Figure 12a shows the variation of the
simlarity variable n with x for the M.S and LS* net hods whi ch shows that n
i ncreases considerably as one goes up the plate. The rate of increase is
hi gher for the LS" approach than for the MS nethod. The heat fl ux
distribution is given in Figure 12b for x values of 0.5 and 2.0. In
general, for both cases, the heat flux variation is well represented by the
power-law distribution in both nethods. These conclusions are sinmilar to
those for the exponential tenperature difference case discussed earlier.

The surface tenperature as a function of x is depicted in Figure 13.
The M.S and LS* nethods both successfully predict the surface tenperature
variation with x. The predictions of the Kao and the Yang nethods are not
shown since they are indistinguishable from the numerical results. Al the
met hods perform well for this case.

Exponential Distribution Figure 14a depicts the variation in the
simlarity variable nmx with x. In the MLS nethod, the value of mx slowy
increases with x. The LS* approach reduces to the simlarity results since
mis a constant equal to 0. a; this result is not obvious from Figure 1l4a
since nx is not constant. The heat flux variation for these approaches is
conpared to the desired variation in Figure 14b for x values of 0.5 and
2.0. The exponential distribution is an excellent approximation to the
desired behavi or.

The surface tenperature behavior, which is given in Figure 15, is well
predicted by the exponential distribution except near the |eading edge.
This behavior coincides well with values of nx greater than 1.0 as
di scussed earlier.

b. ¢"/k = 1 + x

Power-Law Distribution Figure 16a shows the variation of n with x for
both the MLS and LS* net hods. The value of n increases with x in both
cases. Figure 16b conpares the heat flux variation for the power-law
distribution to the desired variation for x values of 0.5 and 3.0. As with
a nunmber of the previous cases, the heat flux behavior is reasonably well
represented by the power-law distribution in both cases.
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Figure 17 shows the tenperature difference variation along the plate.
The answers fromthe Kao nethod and the Yang nethod are not given since
they essentially coincide with the nunerical results, The results fromthe
integral analysis as given by Sparrow (1955) are also shown. Al net hods
give good predictions for this case including the integral nethod.

Exponential Distribution The variation of nmk with x is depicted in
Figure 18a. The value of nx increases slowy for both the M.S and Ls*
approaches. However, for the LS* approach, the value of mx will never
exceed 1.0 no matter how long the plate. Figure 18b shows the heat fl ux
profiles for x values of 0.5 and 3.0. Nei t her nethod does a good job of
matching the heat flux variation with the exponential distribution.

Figure 19 shows the tenmperature difference predictions for this case.
Nei ther nmethod does a very good job of predicting the tenperature
difference, especially conpared to the other nethods. This trend is
expected due to the poor representation of the heat flux variation given
earlier.

c. ¢'/k = 1 - x

Power-lLaw Distribution Figure 20a shows the variation of n with x for
both the M.S and LS* net hods. For the M.S approach, the value of n
decreases slightly with x. The value of n in the LS* approximation
decreases nuch faster than for the M.S approach. The heat flux variation
is given in Figure 20b. The behavior of both nethods is not unreasonabl e,
al though significant differences can be seen between the approxi mation and
the desired variation.

Figure 21 gives the tenperature difference variation along the plate
for a nunber of different nethods. The Kao and Yang nethods diverge from
the nurmerical solution at x values of 0.6. The Kao LS nethod gives widely
different results. The integral results from Sparrow (1955) seemto be the
best behaved, although the results could only be provided out to an x val ue
of 0.5 due to the limted results presented by Sparrow. Fi gure 22 gives
the M.S and LS* predictions. The M.S nethod provides a reasonable
prediction for the surface tenperature behavior; the results are superior
to all the other methods based on the nunerical predictions. Note that the
M.S cal cul ati ons have been perforned out to an x value of 1.0 with no
problens. The LS* predictions tend to blow up like the Kao LS results.

Exponential Distribution The variation of mk with x is depicted in
Fi gure 23a. The val ue of nx decreases slowy for both the MLS and LS*
approaches and is always less than 1.0. The heat flux profiles are given
in Figure 23b. The M.S approximation is unreasonable for this case. The
LS* heat flux variation is nmuch closer, although this method has other
problems for this case.
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Figure 24 shows the tenperature difference predictions for this case.
No predictions are available for the LS* approach since the value of mx is
less than 0. which, in turn, leads to the fourth root of a negative nunber.
The M.S predictions for this case are surprisingly reasonable, especially
considering the poor wall heat flux distribution behavior.
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B. Stratified Fluid Tenperature

The probl em under consideration is an isothernal plate in a linearly
stratified fluid as shown in Figure 25. The tenperature difference between
the plate and the fluid decreases linearly with increasing distance up the
pl ate. A simlar solution is not available for this problem Chen and
Ei chhorn (1976) present a detailed analysis of this problem using |oca
simlarity and local nonsinmlarity methods for their specific coordinate
transformation. Raithby and Hol |l ands (1978) have applied their approxinate
technique (Raithby, et al. (1975, 1977)) to this problem with good results.

The answers to this problemare given in terms of the ratio of Nusselt
nunbers for the stratified fluid to that for an isothermal fluid as a
function of the stratification parameter S, which is

L de

a - -
SE AT dx - (83)
When S<2, the entire plate is hotter than the fluid. For $>2, the bottom
portion of the plate is hotter than the fluid while the top is colder.

The MLS and LS* approaches have been used to anal yze this case for
Prandt! nunbers of 0.7 and 6.0. For the Ls* approach, the value of nis
determ ned by matching the local temperature difference value and the |oca
slope; the value of J was calculated by the appropriate fluid tenperature
variation equation.

Power-Law Distribution Figure 26 shows the variation of the
simlarity paraneters n and J along the plate for the M.S and LS* net hods
and a Prandt! nunber of 6.0. The results for a Prandtl nunber of 0.7 are
not significantly different and are not shown. For both nethods, the value

of n decreases with increasing distance along the plate. The change is
much faster for the LS* case. The value of J increases along the plate in
the M.S nethod. In contrast, J decreases with increasing distance in the

LS" approach.

Figure 27 gives the variation of the tenperatures for an x val ue of
0.5. For both nmethods, the reference value of the fluid tenmperature, T,,
is calculated by matching the tenperatures at an x value of 0.5. The
tenperature variation for the M.S nethod seens a little nore reasonable
than for the LS* approach in that the tenperature difference behavior is
closer to the desired variation.

Figure 28 shows the predicted value of the average Nusselt number for

a stratified fluid over that for an isothernal fluid with the sane average
temperature difference for a Prandtl number of 6.0. The M.S predictions are
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shown on this figure; results fromthe LS* nethod are not included as
di scussed bel ow. The local simlarity and local non-simlarity (LNS)
results are shown as well as the experinmental data from Chen and Ei chhorn
(1976). The predictions by Raithby and Holl ands (1978) are also included
in the figure.

The M.S results were calculated for a nunber of discrete S values out
to 2.0. For s$>2, the predictions are based on an S/ dependence as used
by Chen and Eichhorn (1976) and Raithby and Hol | ands (1978). The M.S
predi ctions show reasonable agreenent with the data with a consistent
overprediction of about 4% The local similarity results by Chen and
Ei chhorn (1976) are much higher than the data with an error of about 16%
The Raithby and Hol | ands predictions go right through the data, although
their results are for a Prandt! nunber of 5.0, not 6.0. The LNS results
show good agreenent with the data with a small consistent underprediction.
Overall, the MLS, Raithby and Hollands, and LNS results are in good
agreenent with the data. The maxi mum di fference between these nethods is
about 5%, while the uncertainty in the data is of this order, or *3.2% for
Nu and £3.5% for S (Chen and Ei chhorn (1976)).

The LS* nethod performs poorly for this case. For a Prandtl nunber of
6.0 and an S value of 2., the wall is always as hot or hotter than the
fluid. The LS* nmethod predicts that the wall tenperature gradient will
change sign about 1/4 up the plate. For the first 1/4 of the plate, heat

is transferred fromthe hotter wall to the fluid. However, for the | ast
3/4 of the plate, heat is predicted to flow fromthe colder fluid to the
hotter plate, which isunreasonable. Therefore, the LS' predictions are

not shown on the figure.

The predictions fromthe various nmethods for a Prandtl nunber of 0.7
are given in Figure 29; no data are available for this case. The MS
net hod predicts a small decrease (-1% in the Nusselt nunber ratio when the
Prandtl number is decreased from6.0 to 0.7. The other nethods predict an
increase in the ratio of about 5% for Raithby and Hollands to 10% for the
LNS approach. Unfortunately, no data are available for this case.

Since the MLS nethod and the Raithby and Hol |l ands approach are
approxi mations, the LNS results are probably the npbst accurate. However ,
sone di screpanci es have been noted in the Chen and Ei chhorn predictions for
a Prandtl nunber of 0.7. Specifically, the numerical results given by Chen
and Ei chhorn (1976) do not match the values plotted by Raithby and Hol | ands
(1978) or by Chen and Eichhorn (1979). The results used in this report are
from Chen and Eichhorn (1979).
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Exponential Distribution Figure 30 shows the variation of the
simlarity parameters mx/L and J along the plate for the M.S and Ls*

approaches for a Prandtl nunber of 6.0. As for the power-law distribution,
the results for a Prandtl nunber of 0.7 are not shown since the results are
simlar. For both approaches, the value of mx/L decreases along the plate,
while the J val ue increases. However, the values and the signs of both
simlarity paraneters are significantly different for the two approaches as
can be seen fromthe figure.

The variations of the various tenperatures are shown in Figure 31 for
both methods for an x value of 0.5. The trends exhibited by the LS
approach seemto be superior to those given by the M.S net hod. The M.S
met hod gives a poor variation of the tenperature difference since an
increasing tenperature difference is predicted while the actual tenperature
di fference decreases along the plate. In contrast to the power-|aw LS*
results, the wall tenperature could not be held constant due to the form of
the fluid tenperature variation equation.

The average Nusselt number variation is depicted in Figure 32 for a
Prandt|l nunber of 6.0. For a Prandtl number of 6.0, the MS results are
significantly below the data by about 6% Results fromthe LS* method are
not shown since, as in the case of a linearly decreasing heat flux, the
nodel blows up for negative values of mx/L. The INS and the Raithby and
Hol  ands predictions are superior to the M.S approach with the exponenti al
di stribution. Figure 33 shows the sane results for a Prandtl nunber of
0.7. The trends are the sane as for the higher Prandtl number in that the
M.S results are nuch lower than the other two nethods. However, unlike the
power-law M.S results, the predicted Prandtl number dependence is simlar
for all three approaches.
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LV, Di scussi on

The M.S net hod has been devel oped and eval uated for a nunber of
nonsimlar tenperature and heat flux cases for the power-law and
exponential similarity distributions. For variable conditions where an
exact simlarity solution does not exist, the MS nethod provides an
estimate of "equivalent” simlarity conditions including velocity and
tenperature profiles. This estimate is achieved by requiring conservation
of energy and the sanme local heat flux at position x,. I'n addition,
anot her possible application of the local similarity approach has been
eval uat ed. The MLS and LS* results have been conpared to those froma
nunber of other methods, including a numerical approach. In general, the
power-law distribution perfornms much better than the exponential
distribution. The exponential distribution cannot adequately sinmulate a
decreasing tenperature difference case, and the non-zero tenperature
difference at the leading edge is a problemas noted in the disagreement in
all cases at x=0., even for those which result in the simlarity solution.

This problem with the exponential distribution is not unexpected. As
di scussed by Sparrow and Gregg (1958) and evaluated by Gebhart and
Mol | endorf (1969), the results for the exponential distribution are only
reasonable if mx, is much greater than 1. The reason for this linmtation
is that the exponential distribution has non-zero values of the boundary
l ayer thickness, nomentum and energy flow at x-O, or at the |eading edge
of the plate, so the results will only be reasonable if the |eading edge
contributions are small. In the present case, the values of mx, range from
much less than 1. to slightly greater than 1. Therefore, in addition to
problems in approximating the heat flux profiles, the small mx, values are
expected to lead to poor conparisons with the correct solutions.

The predictions from the LS* approach vary from reasonable to absurd,
so the LS* nethod is not a reliable technique. In contrast, all the MS
predictions are reasonable even where the nore conplex methods fail or no
| onger apply. Through the introduction of global conservation of energy,
the MLS method has significantly inproved the predictive capability of the
local similarity approach.

The M.S nethod is not without its problenms. For specified tenperature
cases, iteration is required which violates the local simlarity
assunption. However, in nost practical cases, tenperatures and heat fluxes
are related through heat conduction in the wall, and the nore conveni ent
variabl e can be used. Use of the heat flux information pernmts use of the
M.S nethod on a |ocal basis consistent with the local simlarity approach.
The M.S nmethod is not the nobst accurate approach as expected. However, the
met hod is superior to the traditional local simlarity approach. Many of
the other nmore conpl ex approaches, such as the nmethods of Kao, et al
(1977) and of Yang, et al. (1982), have problems with certain cases such as
the linearly decreasing heat flux situation and have not been applied to a
nonuni form fluid tenperature case. In contrast, the MS nethod gives
reasonabl e predictions for all the cases considered. The MLS nmethod is a
useful approximate tool for natural convection analysis for analyzing
vertical plates for nonsimlar conditions.
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V. Summarv__and Concl usi ons

The Modified Local Sinmilarity (M.S) nethod has been devel oped and
applied to natural convection along a vertical flat plate with varying
surface conditions and stratification. The M.S approach conbi nes gl obal
conservation of energy with the traditional local simlarity nethod for
boundary |ayer profiles. The power-law distribution M.S results are
reasonable in all cases eval uated, even where other nore conpl ex anal yti cal
met hods fail or no longer apply. In conclusion, the MS nethod is a useful
approxi mate tool for analyzing natural convection on vertical plates for
nonsinmilar conditions.

Where conputing tines are a major constraint, such as in the analysis
of natural convection in SPR caverns, standard techniques such as finite
differences and local nonsimlarity are inpractical. In this case, the
approximate results provided by the MLS net hod shoul d provide reasonabl e
results within the conputing time constraints. The nmethod has been used in
the devel opnent of the SPR velocity model as summarized by Webb (1988).
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VI. Nonenclature

Cp specific heat

Exp Exponential Distribution

f local simlarity variable in the streamfunction
g gravitational constant

Gry G ashof number based on m

Gry G ashof nunber based on x

J stratification sinmilarity paranmeter

Ls local simlarity

tenperature difference simlarity paraneter
mass flow rate

tenperature difference simlarity paraneter
tenperature difference constant
stratification constant

Power Law Distribution

Prandt| nunber

heat flux

integrated heat flux

tenperature difference, T, - T¢

tenperature

x-direction velocity

y-direction velocity

width of plate

difference in x, x, - x,

di stance along plate surface

distance normal to plate surface

3

vTuyuZ=23 B
—m

=

-<><¥§<C—|)_>|4O-D

thermal diffusivity

Kao parameter (see appendix)
coefficient of thermal expansion
boundary |ayer thickness

stream function

di mensi onl ess coordinate
viscosity

Ki nenmatic viscosity

density

di mensi onl ess tenperature

di nensi onl ess distance for stratified fluid case

M B XTI 6 oI
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Subscripts

1 val ue at position x,

2 val ue at position x;

f fluid

r ref erence

w wal |

@ val ue at edge of boundary | ayer
Superscripts

- average val ue

' derivative with respect to n

* entrainment or ejected value
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Appendix
Kao Met hod

The Kao (1976,1977) approach for natural convection is based on a
coordinate transformation to |essen the dependence on the stream se
coordinate. The streamfunction and simlarity variables are

4G v g3/4
3 = —— 75— f{,x%) (A-1)
p(x) /2
L
£ = J P(x) dx (A-3)
x = C, B(x)'/? "jl’/_a (A-2)
B__\l/4
C1 (’i—yz—) (A-5)

and, for specified wall tenperature variation,

P(x) = Tw(x) - Tf (A-6)

while for specified heat flux conditions,

P(x) = Qz/3 <—§— | Q2/3 dx) /> (A7)
-_aﬁ
Q(x) Cl x (A-8)

Kao, et al. (1977) state that, for power-law distributions of wall
tenperature or heat flux, the above transformations reduce to the
simlarity cases presented by Sparrow and G egg (1958). However, for the
exponential distribution, the two forms are not equivalent. The simlarity
solution shown by Kao, et al. (1977) for the exponential wall tenperature
and heat flux cases is just an asynptotic value applicable as x+e.
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The transfornmed boundary | ayer equations are (Kao, et al. (1977))

2 ' 9f 't af

f + (3 - 2B)ff - f + ¢ = 4€ (f Fr - 3% (A-9)

0” —~ ! — [} a—e- ’ a_f' )

Pt (3-2B) f0 - 4BER =48 (T 57 -0 35 (A-10)
wher e

7 - § (A-11)

P(x)2 dP(x)/dx
and ' denotes differentiation with respect to «.

For local similarity, the RHS of the equations are set equal to O,
and the equations becone

[ '2
£ 4 (3 - 2B)Ef - f + 8 =0 (A-12)

re

9 = e = )
5 + (3 -2B) £ - 4Pfs = 0. (A-13)
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